Step of Proof: comb_for_b2i_wf
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
comb
for
b2i
wf
:
(
b
,
z
. b2i(
b
))
(
True)
latex
by (ProveOpCombinatorTyping (Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
)) (first_tok :t) inil_term)) `b2i_wf`
latex
.
Definitions
t
T
,
,
x
:
A
.
B
(
x
)
,
T
Lemmas
bool
wf
,
true
wf
,
squash
wf
,
b2i
wf
origin